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Abstract—The shallow ocean is an uncertain, varying, dis-

persive environment dominated by ambient and shipping noise
as well as temperature fluctuations that alter sound propa-

gation throughout creating a large number of environmental
variations. The need to develop processors that are capable of

tracking these changes while simultaneously providing enhanced
signals implies a stochastic as well as an adaptive design is

required. The stochastic requirement follows directly from the
multitude of variations created by uncertain parameters and

noise. An adaptive processor providing enhanced signal estimates
for acoustic hydrophone measurements on a vertical array as

well as enhanced modal function and wavenumber estimates is
developed. A normal-mode model is transformed to state-space

form and incorporated directly into the processor enabling the
signal enhancement capabilities. Data synthesized from the well-

known Hudson Canyon experiment is used to demonstrate the
viability of this approach.

Index Terms—adaptive model-based processor, sequential

Bayesian processor, sequential Monte Carlo, particle filter, un-
scented Kalman filter

I. INTRODUCTION

The shallow ocean is a particularly challenging signal pro-

cessing environment primarily because of its inherent dynam-

ics created by temperature variations in the upper layers and

both internal and external disturbances that directly alter the

sound propagation throughout. Temperature variations directly

impact sound speed due their strong interrelationship, while

internal disturbances can be related to fish sounds (snapping

shrimp, mammal communications). External disturbances are

directly related to wind induced wave motion, shipping noise

and other surface related noises. In all, the shallow ocean is

quite a hostile environment to attempt to extract meaningful

information from directly without sophisticated processing

techniques.

Thus, the ocean is a dynamic, ever-changing environment

that requires a processor that can adapt to these changes in a

consistent manner. Adaptive processing can be achieved using

a recursive or equivalently sequential formulation. Sequential

processing enables the realization of such a processor in order

to account for changes especially in a shallow ocean envi-

ronment. The processor tracks these variations by adjusting

parameters that are capable of capturing the environmental

changes (nonstationary spatial/temporal variations) thereby

mitigating them in the measured data and enhancing the sig-

nals of interest. Bayesian sequential processing incorporating

propagation models along with their inherent environmental

parameters as well as measurement and noise models offers a

robust, parametrically adaptive solution to signal processing

problems in such a nonstationary environment. Sequential

Bayesian techniques enable a class of processors capable of

performing in an uncertain, nonstationary (varying statistics),

non-Gaussian, variable shallow ocean environment. Here we

address the problem of estimating or tracking modal functions

in a hostile shallow ocean while jointly adjusting (adaptively)

the inherent propagation model parameters (wavenumber).

Previous work on this problem has investigated adaptive

solutions under Gaussian assumptions using approximate non-

linear processors such as extended Kalman filters with some

success; however, here we attack the problem with the se-

quential Bayesian construct enabling the joint modal function

and wavenumber estimation to proceed without any limiting

statistical assumptions. It has already been shown that this

parametrically adaptive approach can operate successfully in

this environment [25], [26] when estimating modal coeffi-

cients; however, here we construct processors to adapt to the

horizontal wavenumber—a more environmentally sensitive pa-

rameter. We begin by formulating the problem in a state-space

framework and developing the necessary mathematics for pro-

cessor design. Next a simulation is performed based on a well-

known ocean experiment in order to capture the environment

and provide realistic data for the design. The performance of

the Bayesian processor is analyzed indicating its capability

to track both modes and wavenumber simultaneously while

jointly enhancing the raw hydrophone measurements.

The basic approach we employ to solve this problem is

model-based. Incorporating a propagation model into a signal

processing scheme has evolved over a long period of time

where it was recognized that by embedding a physics-based

representation can significantly improve the processing [1]-

[5]. In ocean acoustics there are many problems of interest

[6]-[14] governed by propagation models of varying degrees

of sophistication. Here we are interested in a shallow water

environment characterized by a normal-mode model. The

model-based approach offer a means of estimating various

quantities of high interest, but it also provides a methodology

to statistically evaluate its performance on-line [16].

In this paper, we are primarily interested in investigating the

performance of the “next generation” of model-based signal

processing algorithms, primarily the unscented Kalman filter

(UKF) and the particle filter (PF) with the goal of analyzing

their performance on pressure-field data synthesized from the

well-known Hudson Canyon experiments performed on the

New Jersey shelf [11], [12]. Recall that the PF is a sequential

Markov chain Monte Carlo (MCMC) Bayesian processor ca-

pable of providing reasonable performance for a multi-modal

problem estimating a non-parametric representation of the



posterior distribution [24]. We also compare the PF with the

UKF which is a unimodal processor capable of representing

any single peaked distribution using a statistical linearization

technique based on sigma points that deterministically char-

acterize the posterior [24].

Background for the state-space representation of our prob-

lem is given in Section II leading to the formulation of

the forward propagator. The particular algorithms employed

are discussed in the Appendix. The design of the MBP for

a shallow ocean acoustic problem is discussed in Section

III and the results are given where we compare processor

performance. We summarize and discuss our results in the

final section.

II. STATE-SPACE PROPAGATOR

For our ocean acoustic signal enhancement problem we

assume a horizontally-stratified ocean of depth h with a

known horizontal source range rs and depth zs and that the

acoustic energy from a point source can be modeled as a

trapped wave governed by the Helmholtz equation [9], [13].

The standard separation of variables technique and removing

the time dependence leads to a set of ordinary differential

equations, that is, we obtain a “depth only” representation of

the wave equation which is an eigenvalue equation in z with

d2

dz2
φm(z) + κ2

z(m)φm(z) = 0, m = 1, · · · , M (1)

whose eigensolutions {φm(z)} are the so called modal func-

tions and κz is the wavenumber in the z-direction. These

solutions depend on the sound speed profile, c(z), and the

boundary conditions at the surface and bottom as well as the

corresponding dispersion relation given by

κ2 =
ω2

c2(z)
= κ2

r(m) + κ2
z(m), m = 1, . . . , M (2)

where κr(m) is the horizontal wavenumber associated with the

m-th mode in the r direction and ω is the harmonic source

frequency.

By assuming a known horizontal source range a priori,

we obtain a range solution given by the Hankel function,

H0(κrrs) enabling the pressure-field to be represented by

p(rs, z) =

M
∑

m=1

βm(rs, zs)φm(z) (3)

where p is the acoustic pressure; φm is the mth modal function

with the modal coefficient defined by

βm(rs, zs) := q H0(κrrs) φm(zs) (4)

for q is the source amplitude and H0 is the zero-th Hankel

function at horizontal wavenumber and source range rs.

A. State-Space Model

The depth-only eigen-equation can easily be transformed to

state-space form by defining the state vector of the m-th mode

as

φm(z) :=

[

φm(z)
d
dz φm(z)

]

=

[

φm1(z)
φm2(z)

]

(5)

Thus, we have for the m-th mode the following state

(vector) equation as:

d

dz
φm(z) = Am(z)φm(z) (6)

for

Am(z) =

[

0 1
−κ2

z(m) 0

]

(7)

Assuming that the ocean acoustic noise can be charac-

terized by additive uncertainties, we can extend the deter-

ministic state equation for the M -modes, that is, Φ(z) :=
[φ1(z)| · · · |φM(z)]T leading to the following 2M -dimensional

Gauss-Markov representation of the model:

d

dz
φ(z) = A(z)φ(z) + w(z) (8)

where w(z) = [w1 w2 . . . w2M ]T is additive, zero-mean

random noise. The system matrix A(z) is defined as

A(z) =







A1(z) · · · 0
...

. . .
...

0 · · · AM (z)






(9)

and the overall state vector is

φ(z) = [φ11 φ12 | φ21 φ22 | . . . | φM1 φM2]
T (10)

This representation leads to the measurement equations that

we can write as

p(rs, z) = C
T (rs, zs)φ(z) + v(z) (11)

where

C
T (rs, zs) = [β1(rs, zs) 0 | · · · | βM (rs, zs) 0] (12)

The random noise terms w(z) and v(z) can be assumed

Gaussian and zero-mean with respective covariance matrices,

Rww and Rvv. The measurement noise (v(z)) can be used

to represent the “lumped” effects of near-field acoustic noise

field, flow noise on the hydrophone and electronic noise. The

modal noise (w(z)) can be used to represent the “lumped”

uncertainty of sound speed errors, distant shipping noise,

errors in the boundary conditions, sea state effects and ocean

inhomogeneities that propagate through the ocean acoustic

system dynamics (normal-mode model). These assumptions,

with known model parameters lead to the optimal solution of

the state estimation problem (Kalman filter) [18].



Since our array spatially samples the pressure-field dis-

cretizing depth, we choose to discretize the differential state

equations using a central difference approach for improved

numerical stability, that is, from Eq. 1 we have

d2φm(z)

dz2
≈ φm(z`) − 2φm(z`−1) + φm(z`−2)

4z2
`

(13)

for 4z` := z`−z`−1 . Substituting this approximation into the

modal relations of Eq. 1 gives

φm(z`)− 2φm(z`−1)+φm(z`−2)+4z2
` κ2

z(m)φm(z`−1) = 0

where m = 1, · · · , M and z` is the location of the `-th

sensor. Defining the discrete modal state vector as φm(z`) :=
[φm(z`−2) | φm(z`−1)]

T , we obtain the following set of

difference equations for the m-th mode

φm1(z`) = φm2(z`−1)

φm2(z`) = −φm1(z`−1) +
(

2 −4z2
` κ2

z(m)
)

φm2(z`−1)

(14)

with each of the corresponding modal A-submatrices given by

Am(z) =





0 1

−1 2 −4z2
` κ2

z(m)



 ; m = 1, · · · , M (15)

B. Parametrically Adaptive Processor

The “parametrically adaptive” processor evolves from this

representation by defining a parameter set of interest. Since we

are primarily interested in an environmentally adaptive proces-

sor, that is, a processor capable of adjusting its parameters to

variations in the environment such as temperature, noise, etc.

We choose to capture these changes by allowing the horizontal

wavenumber to vary as compared to our previous efforts [25],

[26] that focused on modal coefficient estimation. Here, we

define the parameter vector as

θm(z) := κr(m); m = 1, · · · , M

and a new “augmented” state vector as

Φm(z`; θm) := Φm(z`) = [φm1(z`) φm2(z`) | θm(z`)]
T

With this choice of parameters (horizontal wavenumber) the

augmented state equations for the m-th mode become

φm1(z`) = φm2(z`−1) + wm1(z`−1)

φm2(z`) = −φm1(z`−1) +
(

2 −4z2
`

( ω2

c2(z`)
− θ2

m(z`−1)
)

)

× φm2(z`−1) + wm2(z`−1)

θm(z`) = θm(z`−1) + wθm
(z`−1)

(16)

Fig. 1. Model-based processor design: (a) Boundary Solver for initial
parameters. (b) Propagator, measurement and noise models. (c) MBP. (d)
Applications: localization, enhancement (tracking) and inversion.

where we have selected a random walk model
(

θ̇m(z) =
wθm

(z)
)

to capture the variations of the horizontal wavenum-

ber with additive, zero-mean, Gaussian noise of covariance

Rwθmwθm
.

As mentioned previously [26] the random walk model

can provide constraints in the simulation, since the param-

eter is modeled as Gauss-Markov implying that 95% of

the samples must lie within confidence limits controlled by

(±1.96
√

Rwθm wθm
). This constitutes a soft statistical con-

straint of the parameter variations [15]. For our runs, we

choose to start the processor with initial parameter estimates

close to those values other researchers have meticulously

estimated from the Hudson Canyon data set [11], [12].

More succinctly, for the m-th mode we can write

Φm(z`) = Am(z`−1)Φm(z`−1) + wm(z`−1) (17)

for

Am(z`−1) =









0 1 | 0

−1 2 −4z2
`

(

ω2

c2(z`)
− θ2

m(z`−1)
)

| 0

− − −
0 0 | 1









The corresponding measurement model is given by

p(rs, z`) =

M
∑

m=1

βm

(

rs, zs; θm(z`)
)

φm(z`)+v(z`); ` = 1, · · · , L

(18)

with

βm(rs, zs) := q H0(θm(z`)rs) φm(zs) (19)

This completes the section on the discrete state-space

representation of the shallow ocean acoustic (normal-mode)

propagation model that is embedded as a “forward propagator”

into the subsequent processors for signal enhancement. Note

that the initial model parameters are obtained from the prior

solution of the boundary value problem as shown in Fig. 1.



III. MODEL-BASED OCEAN ACOUSTIC

PROCESSING

In this section we discuss the development of the propagator

for the Hudson Canyon experiment performed in 1988 in

the Atlantic with the primary goal of investigating acoustic

propagation (transmission and attenuation) using continuous

wave data [11], [12]. The Hudson Canyon is located off

the coast of New Jersey in the area of the Atlantic Margin

Coring project borehole 6010 . The seismic and coring data

are combined with sediment properties measured at that site.

Excellent agreement was determined between the model and

data indicating a well-known, well-documented shallow water

experiment with bottom interaction and yielding ideal data sets

for investigating the applicability of a MBP to measured ocean

acoustic data [11], [12]. The experiment was performed at low

frequencies (50-600Hz) in shallow water of 73m depth during

a period of calm sea state. A calibrated acoustic source was

towed at roughly 36m depth along the 73m isobath radially

to distances of 4 to 26Km. The ship speed was between 2

and 4Kts. The fixed vertical hydrophone array consisted of 24

phones spaced 2.5m apart extending from the sea-floor up to

a depth of about 14m below the surface. The normalized hor-

izontal wavenumber spectrum for a 50Hz temporal frequency

is dominated by 5 modes occurring at wavenumbers between

0.14 to 0.21 m−1. A SNAP [6] simulation was performed and

the results agree quite closely, indicating a well-understood

ocean environment.

In order to construct the state-space propagator, we require

the set of parameters which were obtained from the experimen-

tal measurements and processing (wavenumber spectra). The

horizontal wavenumber spectra were estimated using synthetic

aperture processing [11]. Eight temporal frequencies were

employed: four on the inbounds (75Hz, 275Hz, 575Hz, 600Hz)

and four on the outbound (50Hz, 175Hz, 375Hz, 425Hz). In

this application we will confine our investigation to the 50Hz

case, which is well-documented, and to horizontal ranges from

0.5-4Km. The raw measured data was processed (sampled,

corrected, filtered, etc.) and supplied for this investigation.

A. Adaptive PF Design

The design and development of the environmentally adap-

tive PF proceeds through the following steps as shown in Fig.

4: (1) pre-processing the raw experimental data; (2) solving the

boundary value problem (BVP) [9] to obtain initial parameter

sets for each temporal frequency (e.g. wavenumbers, modal

coefficients, initial conditions, etc.); (3) state-space forward

propagator simulation of synthetic data for PF analysis/design;

(4) application to measured data; and (5) PF performance

analysis.

Pre-processing of the measured pressure-field data follows

the usual pattern of filtering, outlier removal and Fourier trans-

forming to obtain the complex pressure-field as a function of

depth along the array. This data along with experimental condi-

tions (frequencies, sound-speed profiles (CTD measurements),

boundary conditions, horizontal wavenumber estimators (see

[12] for details) provide the input to the normal mode BVP
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Fig. 2. PF design/development procedure: (a) Initial parameters/conditions.

(b) Design runs. (c) Ensemble runs.

solutions (SNAP [6], KRACKEN [7], etc.) yielding the output

parameters. These parameters are then used as input to the

state-space forward propagator (see Fig. 4) developed in Sec.

II.

The state-space propagator is then used to develop a set

of synthetic pressure-field data with higher resolution than

the original raw data, that is, a 46-element array at half-

wave inter-element spacing rather than the 23-element array

used in the experiment. This set represents the “truth” data

that can be investigated when “tuning” the PF (e.g. number

of particles, covariances, etc.). Once tuned, the processors

are applied directly to the measured pressure-field data (23-

elements) after re-adjusting some of the processor parameters

(covariances). Here the metrics are estimated and processor

performance analyzed. Since each run of the PF is a random

realization, that is, the process noise inputs are random, an

ensemble of results are estimated with ensemble statistics

presented. In this way, we can achieve a detailed analysis of

the processor performance prior to fielding and operational

version. In this paper we constrain our discussion results to

processing synthesized pressure-field measurements using a

46-element array.

B. Results

First we investigate the enhancement capabilities of the

PF in estimating the pressure-field over a 100-member en-

semble shown in Fig. 3. Using 1500-particles, we see the

synthesized data (dashed blue line) as well as both maximum

a-posteriori (MAP) estimates (red circles) and conditional

mean (CM) estimates (dotted magenta line with circles). Both

estimators appear to track the field quite well (true (mean)

solution in green dashes). The corresponding innovations

(residual) sequence is also shown (black). Classically, both

estimators produced satisfactory zero-mean/statistical white-

ness tests (see Fig. 4 for PF) as well as the WSSR tests



Fig. 3. Synthesized/enhanced pressure-field (blue dots) data from the Hudson

Canyon experiment simulation with a 46-element hydrophone vertical array
using particle filter estimators: MAP (red), conditional mean (CM) in magenta

and the UKF (turquoise) with corresponding innovations (residuals) sequence
(green).

indicating a “tuned” processor [18], that is, PF-(ZM-WT:

1.2× 10−4 < 3.5× 10−1/3.13% out/WSSR below) and CM-

(ZM-WT: 1.58×10−3 < 3.5×10−1/6.5% out/WSSR below).

The UKF processor also produced reasonable results: UKF-

(ZM-WT: 1.3× 10−3 < 3.5× 10−1/0.0% out/WSSR below)

for the enhanced pressure-field.

Ensemble mode tracking results are shown in Figs. 5 and 6

for each of the modal function estimators, the PF (MAP/CM)

and the UKF. In Fig. 5 we observe that the performance

of the PF (MAP/CM) appears to track the modes quite well

and slightly better than the UKF. The PF estimators perform

equivalently. Two of the modal function estimates (first two)

exhibit the largest errors while the final three functional

estimates are much better. The root-mean-squared (modal

tracking) error for each mode is quite reasonable: RMSE:

(12.1, 7.6, 14.2, 1.9, 8.8)×10−5 again confirming the difficulty

the estimator is having to maintain track on the lower order

modal functions. It is interesting to note that the wavenum-

ber estimates are constantly being adapted (adjusted) by the

processor throughout the runs attesting to the nonstationary

nature of the ocean statistics as illustrated in Fig. 6. The

ensemble average wavenumber estimates are very reasonable:

(PF) 0.206, 0.197, 0.181, 0.173, 0.142; (CM) 0.206, 0.197,

0.181, 0.173, 0.141; (TRUE) 0.208, 0.199, 0.183, 0.175, 0.142.

The PF and CM ensemble estimates are very close to the true

values adapting to the changing ocean environment yet still

preserving wavenumber values on the average. We summarize

these reults in Table I. On a single realization, all three of

three of the processors were capable of precisely predicting

the correct values but the ensemble results give a better overall

performance metric.

Fig. 4. Ensemble innovations zero-mean whiteness testing: (1.2× 10
−4

<

3.5× 10
−4 and 3.13% out).

Fig. 5. Modal function tracking (estimation): synthesized Hudson Canyon
data of a 46-element array (blue plus), UKF (turquoise dots), MAP (red

circles) and CM (magenta squares) particle filters.

Table I. Ensemble Wavenumber Estimation.

True PF CM RMSE

0.208 0.206 0.206 12.1×10−5

0.199 0.197 0.197 7.6×10−5

0.183 0.181 0.181 14.2×10−5

0.175 0.173 0.173 1.9×10−5

0.142 0.142 0.141 8.8×10−5

We also illustrate the multimodal aspect of the oceanic

data by observing the modal function posterior PDF estimates

for modes 2 and 4 as illustrated in Fig. 7 and Fig. 8. It is

clear from the plots that for each depth multiple peaks appear



Fig. 6. Adaptive wavenumber parameter estimates from the Hudson Canyon

46-element array simulation using the MAP (red) particle filter.

Fig. 7. PMF posterior estimation (mode 2) surface for synthesized Hudson
Canyon 46-element array data (particle vs. time vs. probability).

in the posterior estimates. The wavenumber PDF estimate

corresponding to corresponding to mode 5 is shown in Fig. 9.

Again we note the multiple, well-defined peaks in the posterior

distribution leading to the MAP parameter estimate.

The pressure-field posterior dual peaks over the span of the

water column. Visualizing a peak at each depth produces a

“smooth” estimate (MAP) as shown in Fig. 10. This completes

the analysis of the synthesized Hudson Canyon experiment and

the PF processing performance.

IV. SUMMARY

This paper has discussed the development of an environ-

mentally adaptive processor capable of tracking modes and

Fig. 8. PMF posterior estimation (mode 4) surface for synthesized Hudson
Canyon 46-element array data (particle vs. time vs. probability).

Fig. 9. PMF posterior estimation (wavenumber 5) surface for synthesized

Hudson Canyon 46-element array data (particle vs. time vs. probability).

enhancing the raw pressure-field measurements obtained from

a vertical hydrophone array in shallow water. The parametric

adaption was based on simultaneously estimating the horizon-

tal wavenumbers along with the modes and pressure-field as

compared to previous work that concentrated on estimating

the modal coefficients as the environmental parameters of

interest [25], [26]. These parameters were more challenging

from a processor design perspective because of their increased

sensitivity to environmental change compared to the modal

coefficients. We chose a Bayesian sequential design because of

the varying nature of the shallow ocean and applied a normal-

mode model in state-space form to create a forward propagator.



Fig. 10. Pressure-field posterior PMF estimation surface for synthesized
Hudson Canyon data (particle vs. time vs. probability).

The algorithms applied were the unscented Kalman filter and

the particle filter both modern approaches applied to this

problem. We compared their performance and found slightly

better results of the PF over a 100-member ensemble. Our

future efforts will be focused on extending the processors to

actual measurement data.
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APPENDIX

In this section we briefly develop the processors for our

problem with details available in [24]. The basic adaptive

problem we pursue in this paper can now be defined in terms

of our mathematical models as:

GIVEN a set of noisy pressure-field and sound speed

measurements varying in depth, [{p(rs, z`)}, {c(z`)}] along

with the underlying state-space model of Eqs. 17 and 18

with unknown wavenumbers, FIND the “best” (minimum

error variance) estimate of the modal functions, that is,

{φ̂m(z`|z`)}, {θ̂m(z`|z`)}; m = 1, · · · , M and measurements

(enhanced) {p̂(rs, z`)}.

Before we attempt to describe the “new approaches” to the

estimation problem, let us put these techniques in perspective.

The UKF is an alternative to the nonlinear or extended Kalman

filter processor applied successfully in many of the model-

based ocean acoustic applications [1]-[14]. Like the EKF it

is still restricted to a unimodal distribution (single peak),

but that distribution need not be Gaussian. It also performs

a linearization (statistical), but not of the system dynamical

model, but of an inherent nonlinear vector transformation

requiring “sigma points” which deterministically characterize

the underlying unimodal distribution. These points have been

pre-calculated for the Gaussian case [17], [18]. It has been

shown that the UKF clearly outperforms the EKF and its

variants (iterated EKF, higher order EKFs, etc.). and is more



Fig. 11. Unscented Kalman filter algorithm flow diagram: initialization,
prediction, update and innovation with t the index variable.

accurate and precise besides being much easier to implement,

since Jacobians are no longer required. Note also that if we

place the EKF/UKF into the Bayesian framework to follow,

then we see that the underlying posterior distribution has al-

ready been decided to be approximately multivariate Gaussian

with the objective to extract the corresponding conditional

mean and covariance as accurately as possible. Therefore, we

see that the UKF provides the multivariate posterior solution

p̂[φ(z`)|Pz] ≈ (2π)Nx/2|Rφφ(z`|z`)|−1/2 × exp
{

− 1

2

(φ(z`) − φ̂(z`|z`))
T R−1

φφ (z`|z`)(φ(z`) − φ̂(z`|z`))
}

(20)

where φ̂(z`|z`) is the conditional modal mean at depth z`

and Rφφ(z`|z`) is the conditional modal covariance based on

pressure-field measurements up to depth z`.

A detailed flow diagram of the UKF is shown in Fig. 11

where we note the basic predictor/update structure. Much of

the algorithm is devoted to the statistical linearization in which

regression estimators are used to perform the transformation

while the usual Kalman filtering equations are used to perform

the updates. We refer the interested reader to the current texts

or basic papers for more details [19]-[24].

Next we consider the particle filter processor. A particle

filter is a different approach to nonlinear filtering in that it

removes the restriction of additive Gaussian noise sources and

is clearly capable of characterizing multimodal distributions.

In fact, it might be easier to think of the PF as a histogram

or kernel density like estimator in the sense that it is an

empirical probability mass function (PMF) that approximates

the desired posterior distribution such that statistical inferences

can easily be performed and statistics extracted directly. The

computational burden of the PF is much higher than that of

the KF, since it must provide an estimate of the underlying

state posterior distribution component-by-component at each

z`-step along with the fact that the number of samples to

characterize the distribution is equal to the number of particles.

P̂r[φ(z`)|Pz] =

Np
∑

i=1

Wi(z`)δ
(

φ(z`) − φi(z`)
)

∀z` (21)

Wi(z`) ∝ P̂r[φi(z`)|Pz] is the estimated weights at z`;

φi(z`) is the i-th particle at depth z`;

P̂r[·] is the estimated empirical posterior distribution;

Pz is the set of batch pressure-field measurements,

Pz = {p(rs, z1) · · ·p(rs, zL)}.
Thus, we see that once the underlying posterior is available,

the estimates of important statistics can be extracted directly.

For instance, the maximum a posteriori (MAP) estimate is sim-

ply found by locating a particular particle φ̂i(z`) correspond-

ing to the maximum of the PMF, while the conditional mean

or equivalently the minimum mean-squared error (MMSE)

estimate is calculated by integrating the posterior [24].

There are a variety of PF algorithms available, but per-

haps the simplest is the bootstrap technique [24] which

we apply to our problem (see Fig. 12). The PF design

for our problem using the bootstrap approach requires the

conditional state transition probability, Pr[Φ(z`)|Φ(z`−1)], and

the likelihood (probability) Pr[p(rs, z`)|Φ(z`)]. Here the state

transition is characterized by the underlying augmented state-

space model for each mode. For the bootstrap implementation,

we need only draw noise samples from the state and parameter

distributions and use the dynamic models above (normal-

mode/random walk) to generate the set of particles, {Φmi(z`)}
for each i = 1, · · · , Np.

The likelihood, on the other hand, is determined from the

nonlinear pressure-field measurement model of Eq. 18, that is,

for each mode we have

pmi(rs, z`) :=

M
∑

m=1

βm

(

rs, zs; θm(z`)
)

φm(z`)+v(z`); ` = 1, · · · , L

(22)

with

βm(rs, zs) := q H0(θm(z`)rs) φm(zs) (23)

and therefore the scalar likelihood (assuming Gaussian noise)

is

Pr[p(rs, z`)|Φ(z`)] =
1√

2πRvv

× exp
{

− 1

2Rvv
(

p(rs, z`) −
M
∑

m=1

βm

(

rs, zs; θm(z`)
)

φm(z`) + v(z`)

)2
}

(24)

Thus, we estimate the posterior distribution using a sequen-

tial Monte Carlo approach and construct a bootstrap particle

filter [19]-[24] using the following steps:



Fig. 12. Bootstrap particle filter algorithm flow diagram: prediction, update

and resampling with z` the index variable.

• Initialize: Φm(0), wz`
∼ N (0, Rww), Wi(0) = 1/Np; i =

1, · · · , Np;

• State Transition: Φm(z`) = Am(z`−1)Φm(z`−1) +
wm(z`−1);

• Likelihood Probability: Pr[p(rs, z`)|Φ(z`)];

• Weights: Wi(z`) = Wi(z`−1) × Pr[Φm(z`)|Φm(z`−1)];

• Normalize: Wi(z`) =
Wi(z`)

∑

Np

i=1
Wi(z`)

;

• Resample: Φ̃i(z`) ⇒ Φi(z`);

• Posterior: P̂r[Φm(z`)|Pz] =
∑Np

i=1 Wi(z`)δ(φ(z`) −
φi(z`)); and

• MAP Estimate: Φ̂MAP
i (z) = maxi P̂r[φi(z`)|Pz];

• MMSE Estimate: Φ̂MMSE
i (z) = 1

Np

∑Np

i=1 Wi(z`)φi(z`)

More details can be found in the referenced textbooks and

papers [19]-[24]. Thus, we see that there exists a fundamental

philosophical difference between the UKF (Kalman) processor

and the PF processor. Their implementations are completely

different as well: one based on approximating the required

distribution through statistical linearization and one through

an empirical PMF estimator. This completes the Appendix.


